SC16 BoF Report: On-Demand Infrastructure for Data Analytics and Storage

Franck Cappello,1,2 Katrin Heitmann,1 Gabrielle Allen,2 William Gropp,2 Salman Habib,1 Ed Seidel,2 Brandon George,4 Brett Bode,2 Tim Boerner,2 Maxine D. Brown,3 Michelle Butler,2 Randal L. Butler,2 Kenton G. McHenry,2 Joe Insley,1 Athol J. Kemball,2 Rajkumar Kettimuthu,1 Ravi Madduri,1 Alex Parga,2 Silvio Rizzi,1 Roberto R. Sisneros,2 Corby B. Schmitz,1 Sean R. Stevens,2 Matthew J. Turk,2 Tom Uram,1 David Wheeler,2 Michael J. Wilde,1 Justin M. Wozniak1

1ANL, 2NCSA, 3UIC, 4DDN

This report describes the experiment on “on-demand infrastructure for data analytics and storage” that ANL, NCSA, UIC, DDN, and SCinet developed between December 2015 and November 2016. We needed to address several challenges to make this experiment a success. The report presents the motivation and scientific objectives, the design and implementation, and the scientific and technical results.

1. Motivations, Concept, and Experiment

In this section we consider the factors motivating our experiment. We then describe the concept, briefly present the case we use to demonstrate that concept, and the experiment we devised and ran at SC16.

1.1 Motivations

Three main trends motivate reconsideration of the scientific computing infrastructure.

First, the data size and throughput are becoming main limiting factors of extreme-scale simulations and experiments. With current system computational capabilities, extreme-scale scientific simulations and experiments can generate much more data than can be stored at a single site, transferred between sites, or analyzed. The scientific community needs multilevel data access in order to perform complex and accurate analyses, while avoiding severe data reduction methods such as filtering and extrapolation.

Second, often a single site cannot simultaneously satisfy both computing and data analytics requirements. For example, Mira at ANL is well suited for large-scale simulation, and Blue Waters at NCSA is an excellent system for data analytics with its large memory (1.5 PB) and its 4000+ GPU accelerators. Specialization, which is already the norm in scientific instruments because they are optimized for specific objectives, will become more prevalent in simulation and data analytics infrastructure as we reach the end of Moore’s law. Progress in performance is increasingly difficult to obtain from generic systems. Specialized architectures provide a solution to this problem by optimizing the systems for specific objectives. Example of such systems are the Anton machine for molecular dynamics and the GRAPE systems for astrophysics.

Third, extreme-scale simulations and experiments tend to push toward a model where groups of researchers run simulations that are then analyzed by many other groups (the one-simulation, many-groups model), in contrast to each group running their own simulations and data analytics (the one-simulation, one-group model). In the one-to-many configuration, high-performance data access by different groups becomes a fundamental requirement of the scientific computing infrastructure. Current supercomputing centers are designed mostly for high-performance scientific computing and data analytics, while large-scale data centers (such as cloud centers) are optimized for data access and sharing. The scientific computing community will certainly benefit from lessons learned in large-scale data centers concerning data access and sharing.

Several communities have already reconsidered their infrastructure to response to these trends. One example is the high energy physics (HEP) community with the Large Hadron Collider and its dedicated data analytics infrastructure, where the data produced by the experiments is sent to remote distributed
storage and the data analytics is performed on other servers. Another example is the genomic communities, who have their own data banks. However, the associated infrastructure in these cases is dedicated (not shared by other large-scale experiments), specific (responds to specific data distribution needs), and permanent (resources and policies are in place for 24/7 analysis needs).

1.2. On-Demand Data Analysis and Storage Concept

We propose the concept of “on demand infrastructure for data analysis and storage.” This concept differs from the existing infrastructure in HEP (LHC data analytics infrastructure) and genomic communities in several ways. We consider the deployment of an elastic virtual infrastructure connecting several data production sites (comprising both simulation and experiment), data centers for storage, and data analysis centers. The infrastructure setup is not permanent; it is dynamically instantiated on demand for transient needs (even if the data is stored on a long-term basis in the data centers). The same resources (data production site, data centers, and analytics centers) could be used or shared by other scientific communities instantiating their own transient infrastructure, potentially aggregating other resources as well.

Our concept relies on technologies needed for the convergence of high-performance computing (HPC) and big data, such as virtualized resources, resource reservation, software deployment, user group management, and policy management. It combines some grid principles by aggregating geographically distributed resources owned by different institutions, as well as some cloud principles such as infrastructure as a service, elasticity, and virtualization.

1.3. Use Case

To demonstrate the benefit of this new concept, we consider the domain of computational cosmology and propose a response to the pressing needs for higher accuracy for scientific discoveries. The science requirements demand running large simulations, such as N-body runs with trillions of particles. The resulting data products are scientifically rich and of interest to many research groups. It is therefore desirable that the data be made broadly available. However, as a fiducial example, a trillion-particle simulation with the HACC code generates 20 PB of raw data (40 TB per snapshot and 500 snapshots), which is more than petascale systems such as Mira and Blue Waters can store for a single run in their file systems. An interesting point is that while one version of HACC is optimized for Mira and can scale to millions of cores, Blue Waters offers exceptional data analytics capabilities with its thousands of GPUs. This suggests a combined infrastructure based on using Mira for the simulation, Blue Waters for a first-level data analysis, and a separate, possibly distributed, data center to store the distilled results. Users from other universities and labs would then pull the data from the data center and run further data analytics locally according to their particular scientific interests.

1.4. The SC16 Experiment

To demonstrate the feasibility of this concept, a team of about 20 researchers and staff from ANL, NCSA, UIC, and DDN and including SCinet leaders devised an experiment (Figure 1) and demonstrated it at the 2016 International Conference for High Performance Computing, Networking, Storage and Analysis (SC16) in Salt Lake City.

Figure 1: Planned SC16 on-demand data analytics and storage experiment. The actual experiment used ANL for the second-level data analytics and PDACS (see Section 2).
This experiment and demonstration covered several critical elements of on-demand data analytics and storage. During the experiment a state-of-the-art cosmology simulation combining high spatial and temporal resolution in a large cosmological volume was performed on Mira with 29 billion particles. All time snapshots (500) of the simulation (L1 data) were transmitted, as they were produced, to NCSA by using Globus. Note that in previous simulations users were able to analyze only ~100 snapshots because of infrastructure limitations. A first level of data analytics (L2 data) and visualization was performed as snapshots arrive at NCSA using the GPU partition of Blue Waters. Blue Waters also archived the L1 data on tape. The L2 data (half the size of the L1 data) was sent immediately as produced to a DDN storage server (playing the role of a data center). The DDN storage server was then hosted at the SC16 NCSA booth to allow access to and sharing of the resulting data from remote sites. One site (ANL) played the role of remote data analytic centers. It pulled and analyzed the L2 data as it was stored on the storage server and performed specific and different data analytics using the Portal for Data Analysis Services for Cosmological Simulations (PDACS) framework. The goal was to demonstrate that L2 data can be used by other cosmology research groups. Data analysis results were displayed in ultra-high resolution using the SAGE2 software at the SC16 NCSA booth on the show floor. The whole experiment was orchestrated by the Swift parallel scripting language. Details about this workflow are presented in Section 2.

This experiment achieved three objectives never accomplished before: (1) running a state-of-the-art cosmology simulation and analyzing all snapshots (currently only 1 snapshot of 5 or 10 is stored or communicated); (2) combining three different types of systems (simulation on Mira, data analytics on Blue Waters, and data storage on the DDN server) geographically distributed and belonging to different administration domains to run an extreme-scale simulation; and (3) performing multiple different extreme-scale cosmology data analyses from data stored on a remote data center.

To run this experiment, we needed to address several technical challenges:

- **Transfer:** we needed to transfer the data produced by the simulation between the ALCF hosting Mira and NCSA hosting Blue Waters at the sustained pace of 1 PB/day for 1 day.
- **Orchestration:** we needed to orchestrate the simulation run, the transfer of the snapshots as they were produced between the ALCF and NCSA, the analytics, and the storage.
- **Storage:** we needed to demonstrate the feasibility of a dense data server capable of hosting the L1 and L2 data (1 PB) and receiving data at the sustained pace of 100 Gb/s during 1 day.
- **SCInet:** we needed to configure SCInet on the SC16 show floor to accommodate the 100 Gb/s data transfer between NCSA and the DDN storage server hosted at the NCSA booth.

In the following sections we describe the scientific case and discuss these three technical challenges in detail.

2. Science Case

Cosmological simulations that track the detailed evolution of structure in the Universe over time are essential for the interpreting large observational surveys carried out to understand the history and content of the Universe. Cosmological surveys are becoming ever more complex as telescopes reach deeper into space, mapping out the distributions of galaxies at farther and farther distances. These observations provide a treasure trove of information about the makeup of the Universe and its evolution from the first moments to today. The nature of cosmology, however, precludes carrying out controlled experiments in the laboratory. Instead, we must observe the Universe and interpret the results; and central to this process are simulations that provide a unique way to create a virtual laboratory for cosmology. We are able to vary the fundamental physics in the simulations, evaluate resulting measurements in a controlled way, and then predict new phenomena. At the same time, we can model systematic errors in the data, mimic inaccuracies
due to limiting telescope and sensor artifacts, and understand how these limitations can influence our scientific results.

In order to achieve the high-quality simulations that are required to serve as a “Universe in the Lab,” high temporal and spatial resolution are of utmost importance. We need to track the evolution of small overdensities in detail and follow how they evolve into larger structures. Events early in the life of such a structure will determine what kind of galaxy it will host later, controlling, for example, the brightness, color, and morphology of the galaxy. Current and next-generation supercomputers allow us to attain very high spatial resolution in large cosmological volumes by simulating trillions of tracer particles. But more challenges have to be overcome. (1) A snapshot in a trillion-particle simulation comprises 40 TB of raw data. To enable the temporal resolution necessary to capture important details in the evolution of structure, we have to analyze hundreds of snapshots, quickly leading to many petabytes of data. Currently, storing this large amount of data over a long period of time is not possible. (2) The high-performance computer on which the simulation is carried out might not be—and usually is not—the optimal system for data analysis. Analysis tasks are often more out of balance than the actual simulation, and a wide variety of such tasks need to be carried out. Optimizing all analysis tools for a particular HPC architecture is difficult. Therefore, using a better-suited analysis machine is often desirable. (3) The simulation data is rich: we want to create different virtual universes covering different wavelength ranges and enable the larger cosmology community to carry out their own experiments on the simulation results. While doing so will not be possible on the raw data, the processed data needs to be easily accessible; and some common analysis tools should be provided to the wider community. Considering all these challenges, cosmological simulations lend themselves extremely well to demonstrating the power of “on-demand infrastructure for data analytics and storage.”

To demonstrate our vision and to carry out a state-of-the-art simulation that combines very high spatial and temporal solution in a large cosmological volume, we developed and executed the following representative scenario. We carried out a large simulation at the Argonne Leadership Computing Facility (ALCF), using the HPC systems there. The simulation evolved 3072^3 particles (=29 billion) in a simulation box of volume $(512h^{-1}\text{Mpc})^3$. This led to an approximate mass resolution (mass of individual particles) of $m_p=3.8*10^8 \ h^{-1}\text{M}_{\odot}$. Each snapshot holds 1.2 TB of data, split into 256 files, the number of files being optimized for fast data transfer. For the initial experiment, we wrote out 500 snapshots, leading to a raw data output of ~600 TB at Level 1. Later, we continued the simulation further and wrote out another 250 snapshots, leading to another 300 TB of data. An example of L1 data from our experiment is shown in Figure 2, a zoomed-in visualization for a late-time snapshot, showing a very small portion of the full simulation box. All the particles in the region are visualized via Gaussian splats, using the parallel visualization tool vl3.

Figure 2: Zoomed-in visualization to a snapshot. Shown are the particles (L1 data) late in the evolution. The visualization was carried out with vl3.

Next, as soon as a complete time snapshot was written out (L1 data), an automated transfer via Globus Online was triggered on the ALCF system to NCSA’s Blue Waters. After the snapshot arrived on Blue
Waters, an analysis task submission was triggered. We note that the analysis tasks have to be carried out sequentially (time step after time step): information from the previous time snapshot is captured in the analysis in the next time snapshot in order to enable detailed tracking of the evolution of structures. The workflow system therefore had to be carefully designed to resubmit any unsuccessful analysis job and had to wait for an analysis job to finish before starting the next one. Figure 3 shows a visualization of one of the L2 data products resulting from the Blue Waters analysis, the so-called halos.

Halos are bound structures that can be found via a group-finding algorithm (in this case a friends-of-friends finder). The image shows a view of the full simulation box. Halos below a certain mass threshold are visualized as Gaussian splats in blue; halos above a certain mass threshold are shown as spheres, colored with respect to their masses. As part of our SC16 experiment we analyzed the first 500 snapshots, leading to an additional data set of ~80 TB. In our previous simulations, we were able to analyze only ~100 snapshots. Here we wished to analyze all snapshots to obtain very detailed time evolution information. The L2 data was then moved to a central storage and analysis system, in this case residing at SC16. From there, users were able to access, move, and analyze data via PDACS. The portal provides back-ends for analysis at NERSC, on local ANL clusters, and at the Oak Ridge Leadership Computing Facility. Figure 4 shows a snapshot of the PDACS web interface.

PDACS was originally based on Galaxy, a workflow system developed for biology. We adapted PDACS for cosmological data analysis workflows. As part of our experiment, we showed how data was moved from the storage unit on the show floor and then analyzed on a cluster at a PDACS location. The advantage of PDACS is that the user does not need to know anything about the cluster environment where the analysis is carried out (e.g., compilers or submission systems) and can use a large number of diverse analysis tools readily available to carry out complex analysis workflows. These workflows will then lead to Level 3 data products. This complex data movement and workflow scenario demonstrated how to capture the rich science in future cosmological simulations.

An example of a L3 data product is shown in Figure 5, a halo merger tree (this image is from an earlier simulation, we are currently constructing the merger trees from our new simulation). For each halo in the simulation, we have a detailed formation history and can track this history spatially and over time. The resulting trajectories are complicated and are different for each halo. The construction of the merger trees is an important input for semi-analytic approaches to galaxy formation modeling and will be the foundation for galaxy catalogs used by surveys such as the Large Synoptic Survey Telescope. The merger trees also hold a wealth of information about structure formation physics in general. Mining the data that resulted from our experiment will be an exciting and challenging endeavor and result in many scientific papers.

Overall, this complex data movement and workflow scenario leading to different levels of data at very different data sizes demonstrated how we can capture the rich science in future cosmological simulations.
Other visualization of the L1 data was performed and displayed on the SC16 show floor. The NCSA implemented an alternative model of parallelism for genericIO, the I/O library that the HACC simulation code utilizes. The updated code conceptually mirrors parallelism typical to HPC visualization software suites facilitating adoption in such suites, yt and VisIt in particular. NCSA completed the necessary integration development efforts, and high-resolution images were generated from HACC simulation data in both yt and VisIt, with plots from the latter uploaded to a UIC Electronic Visualization Laboratory (EVL) server for inclusion on their tiled display.

EVL had a 2x4K tiled display system in the NCSA research booth on the SC16 exhibition floor, on which it locally displayed high-resolution visualizations, both a movie created by ANL and an image created by NCSA. EVL’s SAGE2 software was used to display, position, and size the visualizations on the tiled display wall.

Figure 4: Snapshot of PDACS, a web-based portal that provides a range of analysis tools (shown in the left bar) allowing easy data access and analysis. The user can create complicated workflows by choosing and combining a range of analysis tools that are then run on a back-end cluster. At SC16, PDACS was part of the live demonstration showing how data could be easily pulled from the show floor and analyzed at different facilities. A major advantage for PDACS users is that they do not have to know any details about the cluster where the analysis is carried out (e.g., submission systems, compilers). PDACS handles all these automatically.

Figure 5: Formation of one halo in a simulation. Each trajectory shows individual halos that over time merged to form a large halo at the last time step. Our simulation provides millions of such merger trees (L3 data).
3. Data Transfer

At extreme scale, our scenario of cosmology simulations requires moving 1 PB of data in a day, which requires an average rate of ~93 Gbps end to end. For the SC16 experiment, the source of the data was the GPFS parallel file system on the Mira supercomputer at the ALCF, and the destination was the Lustre parallel file system on the Blue Waters supercomputer at NCSA.

For moving the data we used the Globus file transfer service [Allen12]. The GridFTP protocol specification [Allcock05] extends the File Transfer Protocol (FTP) to provide secure, reliable, and efficient transfer of data across wide-area distributed networks. GridFTP extensions provide for the use of multiple data movers on a cluster file system, parallelism (i.e., the use of multiple socket connections between pairs of data movers), restart markers for fault tolerance, and control and data channel security. Globus GridFTP [Allcock03] is an open source GridFTP implementation developed primarily at Argonne National Laboratory and the University of Chicago. The Globus file transfer service [Allen12] implements methods for managing the transfer of single files, sets of files, and directories, as well as rsync-like directory synchronization. It can manage security credentials, including for transfers across multiple security domains; select transfer protocol parameters for high performance; monitor and retry transfers when there are faults; and allow the user to monitor status.

The ALCF and NCSA have 12 and 29 nodes, respectively, dedicated for wide-area data transfer. Each of those nodes has a GridFTP server running. We chose to use Globus to orchestrate our data transfers in order to get automatic fault recovery and load balancing among the available GridFTP servers on both ends. The challenge was to identify the appropriate distribution of the dataset (in terms of number of files and file sizes) and the level of parallelism to use in order to achieve this rate on both the parallel file systems and network in between. We performed a number of experiments to identify these parameters. Each time step of the simulation generating 256 approximately equal-sized files turned to be the appropriate distribution of the dataset that achieved the maximum performance. Concurrent transfer of 64 or 128 files with total TCP streams of 128 or 256 yielded the maximum transfer rate. Figure 6 shows the data transfer achieved. We were able to achieve an average data transfer rate of 92.4 Gbps (or 1 PB in 24 hours and 3 minutes), a rate that is close to our goal. We note that this data transfer did not involve end-to-end verification of the integrity of the data.

![Figure 6: Transfer rate for a data transfer between the ALCF and NCSA (no end-to-end checksum verification). Average rate is 92.4 Gbps.](image-url)
Ensuring the integrity of the data by verifying the checksum after it was written to the disk at the destination presented an additional challenge to achieve the desired rate. This process adds additional load on the storage I/O and the CPU on data transfer nodes at both the source and the destination. Globus pipelines the transfer and checksum computation; that is, the checksum computation of ith file happens in parallel with the transfer of i+1 file. But the data still is read twice from the source storage system (once for transferring and once for computing the checksum) and is written (for transfer) and read (for computing checksum) on the destination storage system. In order to achieve the desired rate of 93 Gbps for checksum-enabled transfers, 186 Gbps of read bandwidth from the source storage system and 93 Gbps write bandwidth and 93 Gbps of read bandwidth concurrently from destination storage system are required. This requirement is assuming that no checksum verification failures. If such failures do occur (i.e., one or more files are corrupted during the transfer), even more storage I/O bandwidth and CPU resources and more network bandwidth will be required in order to achieve the desired rate. Each data transfer node at the ALCF has 8 cores. In order to utilize all 96 cores in 12 data transfer nodes, we transferred 128 files (and thus computing checksums of 128 files) concurrently, which yielded the maximum performance. Figure 7 shows the data transfer achieved for checksum-enabled data transfer. We were able to achieve an average data transfer rate of 84.5 Gbps (or 1 PB in 26 hours and 18 minutes). We are investigating the cause for the ~10% reduction in transfer rate for checksum-enabled transfers.

Figure 7: Transfer rate for a data transfer between the ALCF and NCSA (with end-to-end checksum verification). Average rate is ~84.5 Gbps.

Checksum failures did happen for some of our transfers, and they did impact the transfer rate significantly (30–40% reduction). When such failures happened, there were several of them. We are working with the network and storage administrators at both sites and the network administrators of the wide-area network to identify the cause of the checksum failures.

4. Orchestration

In this section, we describe the Swift language and how we used it to orchestrate the coarse-grained programming aspects of the demonstration.

4.1 Swift Overview

The Swift language allows the developer to rapidly implement workflows that orchestrate many concurrent tasks, controlled by data dependencies. The Swift/T implementation [Wozniak13] of Swift focuses on high-performance workflows to utilize TOP500 machines. Such systems are characterized by

Argonne National Laboratory

Last updated 8 hours ago | To site From site

![Graph showing data transfer rate over time]

Figure 7: Transfer rate for a data transfer between the ALCF and NCSA (with end-to-end checksum verification). Average rate is ~84.5 Gbps.
high concurrency (tens of thousands of processor cores or more) and low-latency networks. Swift/T can utilize these systems well, producing over a billion tasks per second [Armstrong14]. As a workflow language, Swift composes existing software components into an overall workflow. Such high performance was not necessary for this demonstration; but since Swift/T can be run as a normal program on, for example, the login nodes of ALCF and NCSA resources, we used it to orchestrate the demonstration.

The Swift language uses C-like syntax and conventional data types such as int, float, and string. It also has typical control constructs such as if, for, and foreach. Swift code can be encapsulated into functions, which can be called recursively. Swift can perform typical arithmetic and string-processing tasks naturally. Swift also has a file type that allows dataflow processing on files. For this demonstration, dataflow was used to trigger progress when log lines were added by the running simulation.

Swift is designed primarily to call into external user code, such as simulations or analysis routines implemented in various languages. Thus Swift is a hierarchical programming model. Like many other systems, Swift/T supports calls into the shell and has powerful syntax for expanding Swift expressions into command lines. Launching is not efficient at large scale, however, and so Swift/T also supports calls into native code libraries directly, as well as calls into optionally bundled interpreters for R, Python, Tcl, and Java via the JVM scripting languages [Wozniak15]. For this demonstration, we used the command line execution feature (specifically, a Swift app function) to launch calls to Globus transfer via the Globus Command Line Interface client, which contacts Globus over SSH. We also used the Tcl feature to call a short Tcl function that checked for changes in the log file.

4.2 Swift Orchestration for the SC16 Demonstration

Swift was used to control the workflow presented in Figure 8.

![Figure 8: Global workflow run for the SC16 experiment.](image)

The simulation was launched independently from Swift by the scientific user. The Swift script was started any time after simulation start. Swift used a small Tcl function on a specific worker process to detect log file additions and file creation. This Swift/T feature for location-aware task distribution allowed the process to keep the same file descriptor open on the log file for efficient detection of additions. The following code presents the Swift script used for the SC16 experiment.

```swift
ROOT = locationFromRank(0); // The process that will follow the log file
// Loop until the log file token indicates completion
for (int i = 0, bool b = true; i < INT_MAX() && b; i = i + 1, b = c) {
    string s, bool c;
    (s, c) = @location=ROOT poll(tailfile);
    // Poll the log file on rank ROOT
    string tokens[] = split(s, " "); // Split string into words
    // Did we file a new file? If so, transfer it!
    if (tokens[0] == "XFER") {
        xfer(tokens[1]);
    }
}
```
About every 10 minutes, data changes were detected, and a Swift for loop issued a command line invocation of the Globus CLI tool to launch data transfer. This is a third-party transfer, so it does not block or consume resources on the login node. On the NCSA side, a separate script was used to launch the analysis job once data arrived. This script ensured that the job completed successfully. If the job did not complete, the user was notified, and the job was resubmitted.

Evaluation. From a performance perspective, Swift did not delay the workflow, so performance was not an issue. Swift used the standard qsub interface on the NCSA side, which was not as fast as expected. In the future, we will use a pilot job mechanism to amortize out the delays due to the system scheduler. Overall, however, the system was able to keep up with the data production rate of the main simulation.

4.3 Future Work

By participating in this demonstration, we learned a great deal about cosmology simulation workflows and how coupled supercomputing installations can support them. We realized that in this workflow, there are many conceptually external events (file system changes, data transfer status changes) that drive overall workflow progress. Normally, Swift progress is controlled by conceptually internal events (task completion, data dependency resolution). We are thus improving Swift support for workflows that are constructed in this manner. Our aim is to make it easier for Swift to support pre-existing workflows, which were not implemented totally in a Swift-friendly manner. Features that we intend to add are built-in support for Globus via its Python bindings and use of inotify on Linux to detect filesystem changes.

4. Storage

We discuss here our selection of the storage platform and the lessons we learned during the experimental run at SC16.

4.1 Goals and Challenges

The storage component of the project imposed three initial requirements in order to receive, store, and distribute a petabyte in a day: (1) it needed to have the storage capacity of 1 PB to contain the L1 and L2 data sets from the experiment, (2) it had to include a data transfer capability connected at 100G Ethernet contained within the solution, and (3) the solution required sufficient I/O performance in order to sustain the 100G transfer over a wide-area network. The capacity was later doubled to 2 PB in order to stage a complete L2 data set onto storage prior to running the data transfer during SC16.

The DDN GS14K\(^1\) was selected as the storage platform providing 2.3 PB in capacity by utilizing 400 x 8 TB SAS hard drives in addition to 8 x 800 GB SSD hard drives dedicated for file system metadata. The GS14K is a dual compute controller system that also includes a complete implementation of the GRIDScaler file system\(^2\) embedded in four virtual machines (VMs) spread across both controllers. The VMs running the file system were also capable of running the data transfer software but 100G Ethernet was not available at the time of implementation. Accordingly, external data transfer nodes (DTNs) running Globus Connect Server\(^3\) were added as file system clients to the GS14K connected via a redundant EDR InfiniBand fabric. Table 1 lists components, while the connection diagram is shown in Figure 9.

By leveraging a parallel file system powered by a large number of capacity hard drives needed to meet our capacity goal, we also met the performance goal of 12.5 GB/s to sustain a 100G Ethernet connection. IOZone confirmed the I/O performance of the storage system by achieving 18 GB/s streaming reads and writes between the DTNs and storage. Local Ethernet network performance was benchmarked as well,

\(^2\) http://www-03.ibm.com/systems/storage/spectrum/scale/

\(^3\) https://www.globus.org/globus-connect-server
achieving 99 Gbps with iperf2 between DTNs across the Arista switch. All DTN TCP tuning was taken from ESNet.4

<table>
<thead>
<tr>
<th>Role</th>
<th>Technology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>DDN GS14K</td>
<td>2 x dual socket compute controllers 4 VMs 8 x EDR IB networking 400 x 8 TB SAS hard drives with 20 spares 8 x 800 GB SSD’s with 2 spares GRIDScaler 3.2.2 file system (IBM Spectrum Scale 4.2.0.2)</td>
</tr>
<tr>
<td>Data transfer nodes</td>
<td>Dell r630</td>
<td>Dual 3.2 GHz Intel E5-2667v3 CPUs 128 GB memory 2 x Mellanox dual port ConnectX-4 VPI, MOFED 3.2-2 RHEL6 OS Globus Connect Server 4.0.41</td>
</tr>
<tr>
<td>InfiniBand switch</td>
<td>Mellanox 7700</td>
<td>Managed, 36 x QSFP port, EDR IB</td>
</tr>
<tr>
<td>Ethernet switch</td>
<td>Arista 7280QR-C36</td>
<td>36 x QSFP port, 24 x 40GbE and 12 x 100GbE</td>
</tr>
</tbody>
</table>

4.2 Lessons Learned and Recommendations
The storage system performed well during a live data transfer to SC16 when GridFTP checksums were disabled. The observed GS14K performance was 12.3 GB/s writes and approximately 98 Gbps total network utilization. However, when the GridFTP transfer was restarted with checksums enabled, the GS14K performance was 11.75 GB/s writes and 7.956 GB/s reads, with an average data transfer rate of approximately 84 Gbps. A greater drop in performance was observed with a checksum-enabled data transfer between the Mira supercomputer at ANL and Blue Waters at NCSA.

We recommend that DTNs contain their own dedicated storage so that compute workloads and data transfer workloads do not compete as the desired transfer rates increase. Additionally, adding a high-performance SSD tier for initial data landing will address the subsequent reads that occur when GridFTP checksums are enabled.

4 https://fasterdata.es.net/host-tuning/linux/
Figure 9: Connection diagram between Blue Waters at NCSA and the DDN storage server at SC16.

6. Making the On-Demand Data Analytic and Storage Concept a Reality
The SC16 experiment stressed the simulation, communication, storage, and analysis infrastructure, and the orchestration and streaming software of the on-demand data analytics and storage concept. Several key elements of the concept will remain to be tested, including the software for resource virtualization, deployment, group management, and policy management. In particular, the software stack run by users was static in the SC16 experiment. In a more complete implementation, software will be deployed as the virtual infrastructure is instantiated.

7. Outcome of the Birds of a Feather Session and the Experiment
The session was attended by about 40 participants. Speakers responsible for the different activities of the experiment presented the challenges they had to address and the recommendations for the community. Questions were asked about details of the experiment, in particular how the proposed infrastructure related to virtualized environment used in cloud computing. Questions also were raised about the file transfers.

This experiment was a pilot to evaluate the feasibility of using SCinet for scientific purposes as part of a nonpermanent infrastructure for simulation, storage, and analytics. We demonstrated that SCinet can be used to analyze results that cannot be produced in existing permanent infrastructures.

An important outcome of the BoF and the experiment is the desire of the SC17 general chair to leverage this pilot experiment and develop an SC activity focused on using SCinet for a broad range of scientific
experiments. The participants of the SC16 “On-Demand Infrastructure for Data Analytics and Storage” experiment are committed to help establish this new activity and will help science teams willing to use SCinet during SC17 for their experiments.

References