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Abstract—Clouds offer significant advantages over traditional cluster computing architectures including ease of deployment, rapid elasticity,
and an economically attractive pay-as-you-go business model. However, the effectiveness of cloud computing for HPC systems still remains
questionable. When clouds are deployed on lossless interconnection networks, challenges related to load-balancing, low-overhead virtualization,
and performance isolation hinder full potential utilization of the underlying interconnect. In this work, we attack these challenges and propose
a novel holistic framework of a self-adaptive IB subnet for HPC clouds. Our solution consists of a feedback control loop that effectively
incorporate optimizations based on the multidimensional objective function using current resource configuration and provider-defined policies.
We build our system using a bottom-up approach, starting by prototyping solutions tackling individual research challenges associated, and later
combining our novel solutions into a working self-adaptive cloud prototype. All our results are demonstrated using state-of-the-art industry
software to enable easy integration into running systems.

I. INTRODUCTION AND MOTIVATION

Over the last decade, we have seen an incredible growth in

the popularity of InfiniBand (IB) as a network interconnect for

high-performance computing (HPC) systems and data centers. The

recent Top 500 supercomputer list, released in June 2016, reports

that about 40.8% of the most powerful supercomputers in the

world use IB as their interconnect. The popularity of IB is largely

attributed to the high-throughput and low-latency communication it

offers. More recently, the use of IB in cloud computing has also

gained interest in the HPC community. Cloud systems built on an

IB interconnect promises high potential of bringing applications

which require a greater level of predictability and performance

guarantees, such as HPC applications, to the clouds [1]. However,

IB-based clouds that are designed oblivious to the underlying

network topology and the installed routing algorithm, and without

network optimizations based on the running workload fails to unfold

the true potential. Challenges related to elastic load-balancing,

efficient virtualization, and tenant performance isolation hinder full

utilization of the underlying interconnect. On the other hand, the

dynamic nature of the clouds, where tenant server machines are

allocated, freed, and reallocated often, requires a self-optimizing

network that takes the current resource configuration, network link

loads, tenant node assignments, Service Level Agreements (SLAs),

and provider-defined policies into account for optimization. Static

network configurations normally used in HPC systems turns out

sub-optimal and potentially insecure, requiring new rapid network

reconfiguration schemes for IB to realize efficient HPC clouds.

In this work, we take on the challenge of designing a holis-

tic self-adaptive framework for IB subnets realizing HPC clouds

based on fat-trees, the most popular network topology for HPC

systems. We build our system using a bottom-up approach, starting

by prototyping solutions taking on individual research challenges

associated with HPC clouds, with an proactive plan to combine

them later into an integrated cloud prototype. A self-adaptive IB

subnet will help achieving better network and system performance

for the HPC clouds without any management interaction, running

as an autonomous system. In addition, the resultant HPC cloud will

improve QoS compliance and reduce SLA violations by proactive

monitoring and optimization. More specifically, we address the

following research challenges to realize an efficient cloud platform

using IB systems and fat-tree topologies.

Challenge 1, Efficient Load Balancing: What mechanisms are

required to achieve efficient load-balancing on network links in the

presence of distinct node traffic profiles in HPC systems.

Challenge 2, Tenant Performance Isolation: How to provide

performance isolation to different tenants in a shared HPC cloud.

Challenge 3, Fast Network Reconfiguration: How to make net-

work reconfiguration in IB fat-trees fast and compact.

Challenge 4, Efficient Virtualization: How to address scalability

issues with virtual machine (VM) live migrations, and how to

efficiently route virtualized IB subnets.

Challenge 5, Self-Adaptive IB network for HPC clouds: How

to design and build a self-adaptive network architecture that can

autonomously optimize itself according to the current resource

configurations and provider defined policies.

II. OUR APPROACH AND RESULTS

In this work, we follow the canonical action research methods [2]

where the project is driven by the goal of building small working

prototypes that meet the requirements identified in each of the

challenges. All prototypes are demonstrated on a local test-bed

using an IB-based cloud infrastructure. We use the OFED1 software

stack with OpenSM on top of Ubuntu to enable IB communication.

For running MPI programs over RDMA, we use the MVAPICH2

MPI library. Several benchmarks are used throughout the work to

evaluate our implementations including OFED’s IB performance

testing utility (perftest), the HPC Challenge Benchmark, the OSU

Micro benchmarks, the Netgauge performance measurement toolkit,

and the NAS parallel benchmark (NPB) suite. In addition, for large

scale evaluation, we use simulations to complement the results

we obtain from our test cluster. For flit-level simulations, we use

an extended IB simulation model implemented in the OMNeT++

network simulation framework. We also use the Oblivious Routing

Congestion Simulator (ORCS for simulating communication pat-

terns on statically routed networks. Furthermore, we use OFED’s

ibsim, a tool that is distributed with the OFED software stack,

to emulate physical topologies for generating routing tables using

OpenSM.

We now present the solutions we have devised to address the

challenges to realize a self-adaptive network architecture for IB-

based HPC clouds.

A. Challenge 1: Efficient Load Balancing

For an efficient HPC cloud, it is highly important that the network

links are balanced and network saturation is avoided. Network

saturation can lead to low and unpredictable application perfor-

mance, and a potential loss of profit for the cloud service providers.

Furthermore, due to the dynamic workload admission, the network

architecture should be able to reconfigure itself according to the

current node traffic profiles. The current routing schemes used in

IB fat-trees can be mainly categorized into either deterministic

1The OpenFabrics Enterprise Distribution (OFED) is the de facto standard soft-
ware stack for building and deploying IB based applications. http://openfabrics.org/
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Figure 1: Bandwidth improvement using wFatTree over fat-tree routing on a 648-node cluster.

or adaptive. Deterministic routing suffers from both static route

assignment and rigid optimization assuming uniform traffic distri-

bution, failing to adapt to changing traffic patterns and distinct node

profiles. On the other hand adaptive routing, although promising

higher degree of network utilization and load balancing, increases

routing overhead, and may introduce out-of-order packet deliveries

as well as degraded performance for window-based protocols.

In [3], we proposed a weighted fat-tree routing algorithm,

wFatTree, which considers node traffic characteristics to efficiently

balance load across the network links. The wFatTree routing is

based on the notion of weights associated with each compute

node. These weights are used to take known or learned traffic

characteristics into account when calculating routes. The weight

of a node reflects the degree of priority the flows towards a node

receive when calculating routing tables. For example, a possible

configuration could be to assign weights to the nodes in the range

[1, 100] depending on how much traffic a node is known to receive

in the network. Such a scheme could assign weight = 1 for the

nodes that receive very little traffic (primarily traffic generators, for

example), and weight = 100 for the nodes receiving traffic near the

link capacity. The values in between, 1 < x < 100, will then reflect

the proportion of traffic a node is expected to receive in the network.

When no administrative information about the compute nodes is

available, weights can be calculated using a simple port data counter

based scheme. In OFED, a utility, ibdatacounts, is provided for

reading data counters. After setting up the network with equal initial

weights for all nodes, new weights can be learned after a specified

time period. If B is the set of receive bandwidths for all the nodes

measured over a time period, the weight for each node can be

assigned in the range [a, b] by using linear transformation as given

by Equation 1.

W (x) = (x− a)
b− a

max(B)−min(B)
+ a, ∀x ∈ B (1)

In Figure 1, the bandwidth improvements offered by wFatTree

over the de facto fat-tree routing algorithm [4] commonly used

in current IB systems are shown on a 648-port fat-tree with 36
leaf-switches. Receiver nodes (rcv) are the hotspot nodes in the

network. As shown in the figures, as more traffic towards hotspots

is generated or more leaf-switches are assigned hotspot nodes,

wFatTree improves total network throughput by up to 60%, as

compared to the fat-tree routing.

B. Challenge 2: Tenant Performance Isolation

Applications running on shared clouds are vulnerable to perfor-

mance unpredictability and violations of the service level guar-

antees usually required for HPC applications. The performance

unpredictability in a multi-tenant cloud computing system typically

arises from server virtualization and network sharing. While the

Tenant 1

Shared Sub-network

Tenant 2 Tenant 3

4 4 4 4 4 4 4 4 4 4 4 4

Figure 2: Tenant allocation in an example fat-tree network.
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Figure 4: The pFTree and Fat-Tree rout-

ing in noisy and noiseless cases (HPCC).

former can easily be addressed by allocating only a single tenant

per physical machine, the sharing of network resources still remains

a major performance variability issue. Intuitively, the network

performance received by the applications of a tenant in a shared

cloud is affected by the workload of other tenants in the system.

The current IB implementation provides isolation mechanisms to

enforce security through partitions, but does not provide those

mechanisms at the routing level. This results in degraded load-

balancing and interference among tenant clusters.

In hierarchical network topologies, like fat-trees, the tenants can

be assigned to different leaf-switches or sub-networks providing

network isolation inherited from the structure of the topology.

However, such an allocation scheme only works for a restricted

number of tenants, and for very rigid server requirements from

each tenant workload, as shown in Figure 2. The switches that

may need a change in routing for providing isolation are shown

in dark gray color in the figure. Relying only on topology given

isolation, only two of the three tenants can be supported leaving

a plentiful of server machines unused. To tackle this problem, we

presented partition-aware routing, pFTree, in [5], and later extended

it to incorporate both provider-defined tenant-wise isolation policies

and weighted load-balancing in [6].

The pFTree routing algorithm [5] aims to achieve two objec-

tives in order of priority: first, it generates well-balanced linear
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Figure 6: Two-phase leaf-switch based multipath routing.

forwarding tables (LFTs) for fat-tree topologies by distributing

routes evenly across the links in the tree; second, while maintaining

routes on the links balanced, pFTree removes contention between

paths belonging to different partitions. The pFTree uses information

about the subnet partitioning and ensures that the nodes in a

partition receive a predictable network performance, unaffected by

the workload running in other partitions. If the topology does not

have enough links available to provide partition isolation (without

compromising on the load-balancing), the pFTree assigns virtual

lanes (VLs) to reduce the impact of contention between different

partitions. The extended partition-aware routing, pFTree-Ext, pre-

sented in [6], additionally incorporate provider defined partition-

wise policies that govern how the nodes in different partitions are

allowed to share network resources with each other. These policies

can be used to implement different SLAs for the tenants in an HPC

cloud.

Figure 3 shows the impact of noise on the average bandwidth

for different communication patterns when using the original fat-

tree routing, as measured by Netgauge. The solid lines represent

the measurements done with no noise from interfering partitions

(N=0), while the dotted lines appear for the tests with the highest

noise in our experiments (N=8). As shown in the figure, for all

three communication patterns, we observe a substantial decrease in

the achieved bandwidth. The pFTree routing algorithm in contrast

substantially reduces the effect of noise on the victim partition, as

noted by the bandwidth and latency benchmarks of HPCC.

C. Challenge 3: Fast Network Reconfiguration

The ability to efficiently reconfigure an interconnection network

is an important feature that needs to be supported to ensure reliable

network services for HPC clouds. In addition to handling faults, re-

configuration could also be needed to sustain network performance,

and to satisfy runtime constraints defined by the provider policies.

For instance, the routing function may need an update to optimize

for a changed traffic pattern, or to maintain Quality-of-Service

guarantees. In IB reconfiguration, the original routing function

needs to be updated to cope with the change. The main shortcoming

of the current reconfiguration techniques in IB is the costly re-

routing for each reconfiguration event, making reconfigurations very

expensive. To address those shortcomings, in [7] we presented a

novel network reconfiguration technique, called Minimal Routing

Update (MRU), and implemented SlimUpdate routing algorithm

that uses MRU to ensure compact network reconfiguration.

The MRU and SlimUpdate Routing Algorithm: The MRU tech-

nique ensures that only a small subset of paths are updated during

the reconfiguration, but still achieves the same routing performance

as a full re-routing. The basic idea of the MRU technique is

that, given a set of end nodes in a topology, multiple routing

functions with the same performance and balancing characteristics

can be generated. The SlimUpdate routing algorithm employs

MRU technique to minimize total path modifications required on a

reconfiguration event. As compared to the original fat-tree routing,

SlimUpdate removes up to 80% ot the needed path modifications

in most reconfiguration scenarios, as summarizes in Figure 5.

Metabase-aided Network Reconfiguration: To further optimize

the IB reconfiguration mechanism, we presented a metabase-aided

network reconfiguration scheme in [8] achieving fast reconfigura-

tions for the fat-tree topologies. In the metabase-aided reconfigura-

tion method, routing is divided into two distinct phases: calculation

of paths in the topology, and assignment of the calculated paths

to the actual destinations. For performance-driven reconfiguration,

when reconfiguration is triggered without a topology change, the

path calculation phase can be completely eliminated by using a

metabase with stored paths from the first phase, hence saving

routing time, which in turn substantially reduces overall network

reconfiguration time. Moreover, once a set of calculated paths

has been distributed to the switches, in principle, the re-routing

phase can be executed in parallel at the switches further reducing

time overhead. In addition, as the number of distinct paths is

limited in a given fat-tree topology, the method reduces routing

time for oversubscribed topologies too. Similarly, our metabase-

aided network reconfiguration can also improve routing efficiency

in virtualized subnets based on the vSwitch architecture [9], e.g. by

enabling fast re-routing when a VM is migrated. In the first phase,

the routing algorithm generates multiple paths between the leaf-
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Figure 7: Metabase-aided Routing significantly reduces the routing time for fat-tree topologies.
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switches (or the switches to which end-nodes are connected), and

the calculated paths can then be assigned to the actual destinations

in the second phase. Two-phase leaf-switch based multipath routing

on an example fat-tree network is shown in Figure 6. The routing

times for metabase-aided routing, as compared to fat-tree routing

are given in Figure 7. The initial routing times are referred to

as mFatTree Initial, where mFatTree Recon-SM represents routing

times when a metabase with calculated paths is used by mFatTree

for generating new LFTs centrally using the subnet manager

(SM). In addition, we show that, if the switches can be equipped

with a parallel update having distributed the paths metabase, the

reconfiguration time can be further reduced, shown as mFatTree

Recon-Parallel.

D. Challenge 4: Efficient Virtualization

VMs is a salient feature of today’s cloud systems. To meet the

demands of HPC workloads, VMs need to utilize low overhead net-

work communication paradigms, like Single-Root I/O Virtualization

(SR-IOV). Yet, when passthrough-based virtualization is coupled

with lossless interconnection networks, live-migrations introduce

scalability challenges due to the substantial network reconfiguration

overhead. The vSwitch IB architecture can be used to mitigate scal-

ability issues, as described in [9]. We presented routing strategies

for virtualized environments using vSwitches in [10].

III. THE BIG PICTURE: A SELF-ADAPTIVE IB NETWORK

After implementing solutions for different challenges in the HPC

clouds, we are now combining them all together in the form of a

self-adaptive network architecture for HPC clouds. The architecture

is inspired by the Rainbow framework [11]. The overview of our

proposed system architecture for adaptive IB subnets is given in

Figure 8. The architecture consists of two layers: a system layer

and an adaptation layer. The system layer consists of the IB subnet

manager (OpenSM), monitors, and effectors. The SM is responsible

to configure and maintain an IB subnet. Monitors request the SM to

get information about the subnet and its devices. Effectors define

mechanisms to change the IB subnet, by installing a new set of

routing tables, for example. The interaction between the system

layer and the adaptation layer is defined by a subnet interaction

API, implemented in the middleware.

The adaptation layer consists of five main components that

interact with each other to provide self-adaptation capabilities to

an IB network. A Subnet Model is maintained based on the

information obtained from the monitors using the subnet interaction

API. The subnet model includes information about the topology of

the subnet, routing tables installed on the switches, and a database

storing accounting information for the cloud tenants. The traffic

profiles of the compute nodes are also maintained, using port data

counter based monitoring service.

The core of the adaptation logic lies in the Adaptation Engine.

The adaptation engine gets provider defined rules and policies as an

input, and evaluates if the current subnet model satisfies the rules

set by the provider, and/or if any further optimization is possible.

The provider-defined policies are defined using an Event-Condition-

Action based domain-specific language, implemented by means of

bison parser generator. If an optimization is possible according

to the rules set by the user, provider-defined policies and other

configurable parameters are given as an input to a consolidated fat-

tree routing algorithm. The consolidated fat-tree routing algorithm

is implemented combining features of our implemented wFatTree,

pFTree-Ext, and virtualized fat-tree routing. According to given

parameters, the consolidated fat-tree routing algorithm calculates

new routing tables. Once a new set of routing tables has been

calculated by the adaptation engine, they are evaluated by the

Routing Evaluator component of the adaptation layer. The routing

evaluator estimates the overhead involved in the network reconfig-

uration required by the new set of routing tables. It also has an

optional simulation engine where the new reconfiguration can be

dry-run to find if there are enough potential benefits of installing the

new configuration over the current one. The reconfiguration process

itself is performed by the Adaptation Executor, which use a block-

by-block difference engine to calculate the required blocks to be

sent to the switches to install the new configuration.

IV. CONCLUSION

In this work, we address several challenges impeding realization

of efficient HPC clouds based on IB interconnect. We present

prototype solutions to achieve efficient load-balancing, tenant per-

formance isolation, fast and compact network reconfiguration, and

improved routing for virtualized environments. Furthermore, based

on our prototype solutions, we present the design of a self-adaptive

network architecture for IB subnets.
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