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ABSTRACT

Popcount is a binary operation where the input is a
binary word and the output is the number of set bits.
Popcount is a common building block for many appli-
cations such as the Hamming distance calculation. Re-
cently, popcount is used to approximate multiplications
in convolutional neural networks. Considering renewed
interest in popcount, this work asks the question: can
programmers lazily use the builtin popcount intrinsic
or is further tuning necessary to achieve peak perfor-
mance?

In this work, we benchmark the efficacy of several
popcount implementations on both the CPU and GPU
to analyze their behaviors under different working set
sizes. On the CPU, results show that for memory bound
workloads, the builtin popcount compiler intrinsic is
within 0.01% of the fastest hand-tuned implementations
suggesting that no hand-tuning is required, while this
gap is up to 60% in the compute bound scenario where
hand-tuned implementations of popcount matter.

1. INTRODUCTION

Popcount performance is critical for many applica-
tions such as binary neural network computations [1].
This paper examines the efficiency for popcount opera-
tions on both CPUs and GPUs.

We leverage an existing benchmark for popcount op-
erations on x86 platforms [2]. This benchmark takes as
input a working set size, and the output is a 64-bit un-
signed integer that counts the number of set bits in the
working set. This CPU benchmark contains different
implementations of popcount ranging from the LUT-
based approach to bit twiddle hacks. Then, we ported
a subset of these implementations onto the GPU using
the CUDA programming language. Our experimental
testbed is a single computing node consisting of an Intel
i7-4790K Haswell CPU and an NVIDIA GeForce GTX
TITAN X. The node is configured with 32 GB dual-
channel 1333MHz DDR3. For CPU implementations of
popcount, we benchmarked implementations that are
well optimized for sequential performance. We used the
OpenMP framework to multithread the workload.

In the GPU implementations, we fuse several opti-
mizations: (1) vector access and vector computation,
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Figure 1: CPU Results (size = 1 GB). Since
the dataset size is much larger than the CPU
cache, the performance of popcount is memory
bound. Hence, the builtin_ popcount instruc-
tion is within 1% of the fastest versions.

(2) popcount methods based on LUTs or bit-twiddles,
and (3) reduction via shared memory or via intra-warp
shuffling. For GPU reduction methods, none of the im-
plementations fully reduce the result into a 64-bit result.
To complete the final computation, we perform the fi-
nal reduction on the CPU. We did not include the CPU
reduction time as it is negligible relative to the GPU
computing.

We choose two dataset sizes, one fits in cache (size =
2MB), while the other exceeds the capacity of the cache
(size = 1GB). These dataset sizes represent a compute
bound and memory bound scenario, respectively. We
run the test for 100 iterations and cumulate the runtime.
We calculate the bandwidth by using the formula: b =
(SIZE * 100) / TIME, where SIZE is the dataset size,
TIME is the cumulative execution time.

2. RESULTS
21 CPU

Figure 1 shows the performance results of various
popcount implementations for a dataset size that ex-
ceeds the cache. Here, our working set size is 1GB.
While, the best implementation is the Harley-Seal algo-
rithm implemented in AVX-2, it is only within 0.01%
faster than the builtin popcount intrinsic. Thus, for
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Figure 2: CPU Results (size = 2 MB). Since
the dataset size fits with the cache, the per-
formance of popcount is compute bound. The
fastest hand-tuned implementation is up to 60%
faster than the default builtin popcount instruc-
tion.
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Figure 3: GPU Results (size = 1GB). Data
widths improve increasing the performance.
CUDA native popcount instruction outperform
software level alternatives for popcount. Opti-
mal popcount operations are dependent primar-
ily by the reduction method. The fastest im-
plementation is only 0.03% slower than CUDA
SDK sample reduction code.

memory bound scenarios, using popcount intrinsic is
sufficient.

Figure 2 shows the performance results for various
popcount implementations for a dataset size that fits
in cache. The best implementation of popcount is the
Harley-Seal algorithm hand-tuned in AVX-2 vector ex-
tensions. Harley-Seal achieves 10% speedup than the
next best performing popcount algorithm, and 60%
faster than gec’s builtin popcount intrinsic.

One reason behind the gap between the builtin pop-
count intrinsic vs. the Harley-Seal algorithm lies in the
efficient usage of CPU hardware resources. The Intel in-

structions manual suggests that the popcount intrinsic
only uses one instruction port [3] out of the seven ports
that Haswell offers. However, the Harley-Seal algorithm
distributes the work amongst multiple execution ports
by parallelizing the lookups across ports. Thus, the
performance of Harley-Seal with AVX-2 is much higher
than its hardware instruction counterpart.

The results for the CPU suggests that for memory
bound workloads, the popcount intrinsic will get you
within 1% of the fastest hand-tuned implementation,
while the gap is at least 60% in the compute bound
scenario. To improve the performance of popcount in
memory bound scenarios, one must increase the bus
bandwidth between DRAM and on-chip CPU memory.
Increasing the number of memory channels, or using
die-stacked memories [4] with their ample bandwidth
can help alleviate this bottleneck.
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Using the same dataset sizes, Figure 3 shows our GPU
results. We only counted the computation time for exe-
cuting the kernel, and did not include the data transfer
time between host DRAM to GPU DRAM. On the y-
axis, the leftmost number is the data width, and on
the rightmost is the reduction method, and in the mid-
dle is the algorithm we used for computing the pop-
count. Native stands for the native intrinsic implemen-
tation of popcount on CUDA. The benchmark entitled
“64__copy“ performs a copy from GPU DRAM to on-
chip and back to GPU DRAM to demonstrate the high-
est attainable bandwidth for reference.

Larger data widths incur better the performance, as
vector data types such as 128-bit are better than their
64-bit counterparts which are better than their 32-bit
counterparts. Reduction on the GPU is much faster
than any other form of reduction (such as reductions
on the CPU). Surprisingly, using the shuffle GPU in-
trinsic to perform the reduction within warps is much
slower than performing a regular reduction using shared
memory. We used the CUDA GPU reduction method
from the CUDA SDK sample code. For popcount per-
formance, the GPU popcount intrinsic outperformed
the software backed bit-twiddling hacks. Optimal pop-
count operations on the GPU are dependent primarily
by the reduction method. The use of the native pop-
count intrinsic is sufficient to compute the popcount in
the GPU.
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