Motivation & Contributions

- **What are the limitations of today’s CFD simulations?**
 - Production CFD codes operate at 3–5% of the architectures peak performance
 - Deterioration in convergence rate of the numerical solver with
 - increasing problem size
 - large parallel partitioning
- **Why do we need an efficient CFD solver?**
 - To reduce the simulation times by taking advantage of the full potential of today’s computing powers
 - To enable new simulations currently impossible, by utilization of High Performance Computing
- **Contributions of this work:**
 - Targets an entire application, as opposed to a single stencil kernel
 - Presents a highly optimized and scalable parallel CFD solver
 - Maps well onto different platforms, with different memory hierarchy and CPU architectures

Navier-Stokes Flow

<table>
<thead>
<tr>
<th>Governing equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0)</td>
</tr>
<tr>
<td>(\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot (\mathbf{v} \otimes \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{S} + \mathbf{F})</td>
</tr>
</tbody>
</table>

\(\mathbf{F} = \) Endo Flux + Inviscid Flux + Artificial Dissipation

Implementation

Our algorithm was designed to overcome the limitations of today’s simulations, with the goal of scalability on different multicore systems in mind.

Verification

We use the following simulations in order to verify the obtained results:

- **Laminar Step Flow**
 - Mach number 0.2
 - Grid Size 200x100
 - Steady (Reynolds number 50)

- **Unsteady (Reynolds number 250)**

Performance Results

GFlops Improvement

The following figures illustrate the improvements of Gflop per second with each optimization for the step flow on a grid with size 1000x500 cells.

The initial baseline code achieved 1.28 GFlops for double precision and 2.18 GFlops for single precision.

Simulation Speedup

The following figures illustrate the speedup achieved for the execution time of a full simulation, with a residual drop of 3 orders of magnitude.

Future Work

As future work, we plan to continue with this trend in improving these simulations, and add more features to our solver. The following are some of our future goals:

- **Parallel Implementation of Multigrid**
- **Supporting Turbulence Models**
 - This is essential to capture the physics in numerous real-world applications
- **Heterogeneous Algorithms**
 - Computational resources are wasted when either CPU or GPU is left idle.
 - We plan to partition the grid to utilize the entire system to its full potential
- **Distributed Implementation**
- **Simulations on Supercomputers**
 - Our ultimate goal is to enable new simulations using supercomputers