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Sequential read from buffer 

Process boundary nodes: 

Update by CG iterations 
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• We are developing a comprehensive earthquake simulation system 

designed to model all phases of an earthquake disaster 

• Large-scale forward modeling of wave propagation and soil amplification 

enabled by a fast, unstructured finite-element simulation (e.g., Ichimura et 

al. SC14 [Gordon Bell Finalist], SC15 [Gordon Bell Finalist]) 

• The next step is physics-based earthquake forecasting via assimilation 

of observational data and multiple crust-deformation analyses 

Target problem: T-DOF crust-deformation analysis for physics-based 

earthquake forecasting 

• Fast, scalable and portable solver with low-memory footprint 

developed for a comprehensive earthquake simulation system 

• Short time-to-solution attained by putting a high load on the 

compute units, cache, and memory; the effective use of all of 

these units is required for high-performance 

• This system running on the next generation of 

supercomputers is expected to enable 104-5 times crust-

deformation simulation and will be key to developing a 

dramatic reduction in seismic loss levels 

• Also useful for non-seismic applications where appropriate 

modeling of geometry is essential 

• Also developed a mathematical method to rigorously split a 

whole-island scale Peta-DOF problem into a macro-region 

problem in coarse resolution (0.01T-DOF) and micro-region 

problem in fine resolution (2.05 T-DOF) 

• An extremely large practical problem was solved: a micro-

analysis model with 2.05 T-DOF and 0.513 Tera elements (205 

times larger than the current state-of-the-art) computed using 

the full K computer in 3199 s. High-resolution analysis enables 

computation of change of stress at plate boundaries 

• High performance and fast time-to-solution attained for 

the practical problem: 1.07 PFLOPS (10.1% of peak) 

achieved for the solver, and 30 times faster than the memory-

efficient CG solver developed in SC14 [2] (3×3 block Jacobi 

preconditioning and EBE method) 

• Dramatically improves the reliability of damage estimation by forward 

modeling, as shown above: most important core technology for 

comprehensive earthquake simulation system 

• Problem size 102-3 times larger than the state-of-the-art crust-deformation 

simulation: need of fast and scalable implicit solver with low memory 

footprint 

Performance portability Performance on the K computer 

Effectiveness of the mixed-precision algorithm 

• High convergence with a low-memory footprint: communication avoiding inexact LU preconditioning used for 

coarse grid of a mixed-precision multi-grid preconditioner in an inexact conjugate gradient (CG) method 

• Fast computation with low-memory footprint: a SIMD buffering and multi-core coloring method developed for 

efficient matrix-free matrix-vector multiplication [the element-by-element (EBE) method] 

• Highly scalable: the on-cache EBE method circumvents load-imbalance from difference in memory access patterns 

in the unstructured computation 

Outer CG solver (in double precision) 
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Use as initial solution 

Use as preconditioner for outer CG solver 

Linear tetrahedra 

Second ordered tetrahedra 

Inner fine CG solver 

Inner coarse CG solver 

Second ordered tetrahedra 

Process #0 

Process #2 Process #1 

Internal nodes: 

Update by inexact LU 
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Inner-outer CG solver 

(in single precision) 

Inner-inner CG solver 

Inner coarse: 1772 iterations 

(0.088 s per iteration) 

Inner fine: 152 iterations 

(0.326 s per iteration) 

Outer: 9 iterations 

(0.712 s per iteration) 0 
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High DOF/memory attained: 2.36 T-DOF problem 

solved using the full K computer with 1.3 PB memory 

High performance for unstructured FEM: 

1.21 PFLOPS (11.4%) attained for the whole solver 
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High scalability attained up to the full K computer: 

88.8% size-up efficiency for memory bandwidth 

utilization 
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# of cores 

(×105) 

Outer 

Inner fine 

Inner coarse 

1.84 times speedup attained by use of a mixed precision algorithm: 

inner fine and inner coarse loops accelerated by use of single precision 

Hardware peak double 

precision FLOPS 

Hardware peak 

memory bandwidth 

36 nodes of K computer with single 

eight-core SPARC VIIIfx 

4.60 TFLOPS 2.30 TB/s 

9 nodes of Intel Broadwell cluster with 

dual 18-core Intel Xeon E5-2697 v4 

11.9 TFLOPS 1.38 TB/s 

 K computer  Broadwell cluster 
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Inner coarse faster for the K 

computer due to the bandwidth 

bound inexact LU kernel 

Inner fine faster for the Broadwell 

cluster: compute bound EBE kernel 

(27.6% [K] & 27.0% [Broadwell] of 

double precision peak FLOPS 

attained) 

Performance improvement reflecting the increase in the number of 

cores and SIMD length. Further speedup on many-core machines 

expected by changing inexact LU kernel to EBE kernels 
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[On Intel Broadwell cluster] 

Macro-analysis region (0.01 T-DOF 

problem with 500 m resolution in [1]) 
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Double precision Mixed precision 

1.84 x faster 

101.1 s 

186.8 s 

134.2 s 

48.1 s 

4.5 s 

70.2 s Inner coarse 

26.8 s Inner fine 

4.1 s Outer 

218.7 s 

Wave propagation 

-7 km 

0 km 

Maximum surface response computed with 133 billion 

degrees-of-freedom & 33 billion element soil model 
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Maximum response of 328,056 buildings 

computed with nonlinear frame models 

Earthquake Post earthquake 

Soil amplification & 

city response 

Social response - evacuation 

One of 2.0 million agents evacuating to nearest safe site 
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Target domain Input slip distribution 

(one case of data assimilation simulation) 
Macro-analysis region 

Micro-analysis region 

Buffering for the SIMD computation of an EBE kernel 

Efficient coloring for multi-core computation of an EBE kernel: Good 

load balance, high-locality, and fewer colors 

EBE loop 

(for each element) 
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Random read from global 
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Computation 

Sequential write to buffer 

Random write to global left 

hand side vector 
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Overall mesh 

Thread 1 

Thread 2 

Thread 3 

Color #1 Color #2 Color #3 

(Threads 2,3 idle) 

Decompose mesh using graph partitioning method 

Compute displacement and stress distribution 


