A Fast Implicit Solver with Low Memory Footprint and High Scalability for Comprehensive Earthquake Simulation System
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Comprehensive Earthquake Simulation System Key ldeas and Innovations

* We are developing a comprehensive earthquake simulation system * High convergence with a low-memory footprint: communication avoiding inexact LU preconditioning used for farget domain ey MPUtSlip distribution
designed to model all phases of an earthquake disaster coarse grid of a mixed-precision multi-grid preconditioner in an inexact conjugate gradient (CG) method % Macro-analys realony 2 | (one case of data assimilation simulation)
. Large-scale forward modeling of wave propagation and soil amplification « Fast computation with low-memory footprint: a SIMD buffering and multi-core coloring method developed for 45-’ | %ﬁ """"

enabled by a fast, unstructured finite-element simulation (e.g., Ichimura et

. . * Highly scalable: the on-cache EBE method circumvents load-imbalance from difference in memory access patterns e 1| O o P
al. SC14 [Gordo_n Bell EII’]BJIS’[], SC15 [Gordon Bell Fmal_|st]) | o in the unstructured computation e 7,649
* The next step Is physics-based earthquake forecasting via assimilation > s 4 s

of observational data and multiple crust-deformation analyses A = N - 2,550
ST ' ' | 0.000

_______________________________________ b I_____.________________________________________ . 2 : mm«n : £
citv/social response : Inner coarse CG solver i g _ 1Inner-inner CG solver el Micro-analysis\tegion
Y P Wave orobadation —_ . S| 2! Process boundary nodes: DR e
o 10%7 x 10%7 x 10*° m propag = . | > S | et
rJ Jomain size %: | inear tetrahedra : O S Update by CG Iterations e
T E S l' U . t I I t : g g : Internal nOdeS ...............................................................................................................
Q! se as initial solution O ! - 0 | ; |
cohesive state (10*'m re .5 o, . : % 3 Update by inexact LU P #1 1 5 130 135 140 145 150 155
< Ul i S o |INner fine CG solver : 9l &L 1OLess #2, Compute displacement and stress distribution
- c)| ' e ¢ _______________________________________
. o C — ,
wave propagation S B Second ordered tetrahedra : L
— C' .. ; E
o =) V¥ Use as preconditioner for outer CG solver | — €
———————————————————————————————————————————————————— o Inner-outer CG solver -
Outer CG solver (in double precision) LD (in single precision) K
S Pacific
&)
Second ordered tetrahedra &)
Soil amplification & A V'ke/buk;‘f'f,o%; & T S EBE loop i c Decompose mesh using graph partitioning method
: i S T i Yot | Lt YR @ T TR Gk < g ¥ e, PSS o — Y Rttt e 2944 km
City response o ok &Y el e o (for each element) A= Random read from global = i nread 1,
s b o | = right hand side vector 5 ! hread 2, Macro-analysis region (0.01 T-DOF Micro-analysis region (2.05 T-DOF
| Sany 4= qC) i . al ! hread 3. problem with 500 m resolution in [1]) problem with 45 m resolution)
b —-‘ el Computation = g | |
) I
iR Dl © . . N O I . . .
by | PR T E T Sequential write to buffer - | .+ Also developed a mathematical method to rigorously split a
s d g  Jek ey 8 ""l’ % ‘~"-':.'-' :.;'",‘-‘ \‘."'. :. i & _I .‘/ : = \_I : . . .
Seartivly g A e D el R AR i = 9|4 T alp= : ' whole-island scale Peta-DOF problem into a macro-region
B v N e U ) 1 OREE S B = 2| =< | | Sequential read from buffer | = & | | . . . .
AR SR RL . i R Y (e L SIS Wit , = S| T _ =5 ' Color #1 Color #2 Color #3 . problem in coarse resolution (0.01T-DOF) and micro-region
T A o R W &« e ST AR : o < | | [ Random write to global left | ¥ & Overall mesh . | . -
Rt AR | AR = O e A VS N\ = 5| = . c £ . (Threads 2,3 idle) ' problem in fine resolution (2.05 T-DOF)
a7 AR N Rl M T 3R N e I BKYO Statarky. o . o3| o hand side vector © 0 T B ! : :
. PO e o W Oy S e A Element matrix © <| © < O " . . . * An extremely large practical problem was solved: a micro-
- a0 R T et Wi« SN L S Efficient coloring for multi-core computation of an EBE kernel: Good analysis model with 2.05 T-DOF and 0.513 Tera elements (205
8 : ' : NG A i o A : : . . . - .
: I ¥ TR w&' 4 Buffering for the SIMD computation of an EBE kernel load balance, high-locality, and fewer colors y

times larger than the current state-of-the-art) computed using
the full K computer in 3199 s. High-resolution analysis enables
computation of change of stress at plate boundaries

* High performance and fast time-to-solution attained for

_____

Performance Measurement Results
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