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ABSTRACT
Extreme-scale applications are at a significant risk of being
hit by soft errors on supercomputers, as the scale of these
systems and the component density continues to increase. In
order to better understand soft error vulnerabilities in those
applications, the application-level fault injection is widely
employed to evaluate applications. This poster reveals that
the application-level fault injection has some inherent uncer-
tainties due to the random nature of fault injection. First,
the fault injection result has a strong correlation with the
number of fault injection tests. What is a good number of
fault injection tests is uncertain. Second, given a specific
application, the fault injection result can vary as the input
problem of the application varies. How to interpret the fault
injection result is uncertain. Those uncertainties can make
fault injection ineffective for accurately modeling application
vulnerability.

1. INTRODUCTION
Resilience is one of the major design goals for extreme-

scale systems. Looking forward to Exascale, the sheer scale
of components and the move toward heterogeneous architec-
tures and shrinking feature size of hardware will compound
the resilience challenge. One especially difficult problem in
resilience is soft errors: a one-time, unpredictable event that
results in bit flips in memory and errors in logic circuit out-
puts that corrupt and contaminate a computing system’s
state. A soft error can alter the results of applications
silently without any omen; a soft error can cause application
crashes and extend application execution time. Because of
the highly negative impact of soft errors on applications, we
must better understand the impact of soft errors on large-
scale applications.

The application-level fault injection is one of the most
common methods to study the application resilience to soft
errors. With the application-level fault injection, artificial
faults are randomly injected into application variables or
computation logic, and the application vulnerability is then
evaluated based on the application responses [2, 3, 1, 4].
This methodology usually performs a large amount of fault
injection tests. Among N fault injection tests, if M of them
have correct application execution and outcome, then the
application vulnerability (i.e., the fault injection result) is
calculated as M/N . A lower value of the fault injection re-
sult indicates that the application is more vulnerable. We
have seen LLVM-based fault injection tools [2, 3, 1] and bi-
nary instrumentation-based fault injection tools [4, 6]. Many
applications and algorithms have been evaluated based on
the application-level fault injection, such as AMG [3], a cou-
ple of iterative methods [5], and Nek5K [4].

The application-level fault injection has some inherent
uncertainties due to the random nature of fault injection.

Given an application, how many fault injection tests should
we do to make a statistically significant conclusion on the
application vulnerability? Also, given an application, the
current fault injection practices often study its vulnerability
with a single input problem. Does the application vulner-
ability vary with the input problem? Those uncertainties
can make fault injection ineffective for accurately modeling
application vulnerability.

In this poster, we explore the answers to the above ques-
tions and aim to understand the inherent ineffectiveness of
application-level fault injection. We use an LLVM-based
fault injection tool, and extensively perform fault injection
on a series of benchmarks with different numbers of fault
injection tests and different input problems. We have two
interesting conclusions based on our tests. First, the fault
injection results have a strong correlation with the number
of fault injection tests: the fault injection results of some ap-
plications are highly sensitive to the umber of fault injection
tests, while the fault injection results of some applications
are relatively independent of the number of fault injection
tests. Second, given a specific application, the fault injec-
tion result can vary as the input problem of the application
varies. Our conclusions provide important guidance on the
future application-level fault injection practice.

2. METHODOLOGY
We employ a LLVM-based fault injection tool, FlipIt [2],

to study seven NAS parallel benchmarks (CG, MG, FT, BT,
SP, LU, IS). With FlipIt, for each fault injection test, we
randomly select an instruction and then randomly flip a bit
in the output operand. We always use single-bit flip for
our fault injection tests. We inject faults into the critical
functions of the benchmarks (particularly, conj grad for CG,
mg3P for MG, fftXYZ for FT, x solve for BT, x solve for
SP, ssor for LU, and randlc for IS). For each benchmark, we
study five different input problems (S, W, A, B, and C). For
each input problem, we do ten sets of fault injection tests.
The number of fault injection tests in the ten sets ranges
from 1000 to 10,000 with a stride of 1000.

3. EXPERIMENT RESULTS
Figures 1 show the fault injection results (shown as “suc-

cess rate” in the y axis). We first study the sensitivity of the
fault injection results to the number of fault injection tests.
We find that the fault injection result of CG is highly sen-
sitive to the number of fault injection tests. For the input
problem A, the fault injection results are 62% for 2000 fault
inject tests and 75% for 10,000 fault injection tests. There
is 13% difference. In addition, when the number of fault
injection tests is 1000 (using input problem A), we find that
CG demonstrates higher resilient than MG (0.78 for CG vs.
0.76 for MG). However, when the number of fault injection



Figure 1: The fault injection results for seven NPB
benchmarks.

tests is 2000, we make a totally opposite conclusion: MG is
more resilient than CG (0.62 for CG vs. 0.78 for MG). This
observation is a clear demonstration of the ineffectiveness of
using fault injection to study the application vulnerability.
Besides CG, the fault injection result of MG also has some
obvious variance when the input problem size is S. For other
benchmarks (IS, FT, BT, SP, LU), their fault injection re-
sults are relatively stable (less than 10% variance) across
different numbers of fault injection tests. This suggests that
1000 fault injection test (the least number of fault injection
tests in our experiments) is good enough to study their vul-
nerability.

We further study the impact of input problem size on the
application vulnerability. We focus on the results of 10,000
fault injection tests. For input problem W, the fault injec-
tion result of BT is 75%, while for other input problems, the
fault inject results are all about 85%. SP also demonstrates
high sensitivity: the fault injection result varies from 70%

to 90% across input problem sizes. For CG, FT, MG, LU,
and IS, the fault injection results are relatively stable across
different input problem sizes.

Conclusions: We aim to understand the inherent inef-
fectiveness of application-level fault injection. We hope that
this poster can help us improve the common practice of fault
injection and enable a more accurate understanding of ap-
plication vulnerability.
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