THE PROBLEM & SOLUTION

- What is wrong with today’s web browsers?
 - None exploit multi-core parallelism benefits.
 - None were designed to handle today’s highly complex web pages.
 - Slow page-load times are a growing concern, especially on mobile platforms.
- What is a solution?
 - A web browser engine that parallelizes its web rendering tasks.
 - Need to avoid parallelism when its overhead outweighs its benefits.
- What is a practical solution?
 - Smart parallelism!
 - Construct a model to predict how many threads to spawn for rendering tasks.
 - Train and test model using supervised learning methods.

WEB PAGE CHARACTERIZATION

- The workload of a browser is dependent on the web page it is rendering.
- Document Object Model (DOM) tree of a web page describes its structure.
- DOM tree characteristics intuitively predictive of available parallelism:
 - DOM-size: total number of nodes in the DOM tree
 - attribute-count: total number of attributes in the HTML tags
 - web-page-size: size of the web pages’ HTML in bytes
 - number-of-leaves: number of leaves in the DOM tree
 - avg-tree-width: average number of nodes at each level of the tree
 - max-tree-width: largest number of nodes at a level of the tree
 - avg-work-per-level: average work per level of the tree
- Why characterize a web page?
 - These DOM tree characteristics are the input features of the predictive model.

AUTOMATED LABELING

- Why automate labeling?
 - Eliminates need for domain expert to manually label training data.
- Three cost models
 - Performance Cost Model
 - Energy Cost Model
 - Performance & Energy Cost Model
- Labeling flow
 1. Collect performance & energy data for each web page with 1, 2, 4, 8, … threads.
 2. For each web page, compute speedups and greenups for each thread.
 3. Using a tuned cost model, label the web page.
- How to label using the Performance/Energy Cost Model?
 - Using thread that achieves optimal performance/energy.
 - How to label using the Performance & Energy Cost Model?
 - Using Performance-Energy Tuple (PET) buckets.
 - Choose thread from highest PET bucket that satisfies greenup limit.

CONCLUSION & VISION

- Evident correlation between DOM-tree features and parallel work.
- Guided, work-load aware scheduling
- Use model to guide scheduling and maintain load-balancing.
- Big LITTLE for parallel web browsers
- Exploit and model BIG-LITTLE parallelism for web rendering tasks.
- App-clutter-free smartphones
- Demonstrate greener and higher performance than native apps.
- Revive the universal Web platform
- Shift focus of app development to the Web, accessible by all device-types.