
Big Data Helps Particle Physicists to Concentrate on
Science

Saba Sehrish
Fermi National Accelerator

Laboratory
Batavia, IL 60510

ssehrish@fnal.gov

Jim Kowalkowski
Fermi National Accelerator

Laboratory
Batavia, IL 60510
jbk@fnal.gov

Oliver Gutsche
Fermi National Accelerator

Laboratory
Batavia, IL 60510

gutsche@fnal.gov
Matteo Cremonesi

Fermi National Accelerator
Laboratory

Batavia, IL 60510
matteoc@fnal.gov

Alexey Svyatovskiiy
Princeton University
Princeton, NJ 08544

alexeys@princeton.edu

Jim Pivarski
Princeton University
Princeton, NJ 08544

pivarski@princeton.edu

1. SUMMARY
In this poster, we evaluate Apache Spark for High Energy

Physics (HEP) analyses. Our goal is to understand how
well this technology performs for HEP-like analyses in both
HPC and Hadoop ecosystem. We use an example from the
Compact Muon Solenoid (CMS) experiment [4] at the Large
Hadron Collider (LHC) in Geneva, Switzerland, the highest
energy particle collider in the world. The CMS detector
measures different properties of the particles produced in
a collision, such as tracks left by charged particles and en-
ergy deposits from all particles that interact via photons
and gluons. Our use case focuses on searching for new types
of elementary particles explaining Dark Matter in the uni-
verse. In particular, this search is looking for a signature
in the events commonly referred to as mono-X where X can
be a light quark or gluon, a vector boson, or a heavy quark
such as a bottom or top quark. We focus our search on the
monoTop signature, where the detectable particle is a single,
unbalanced top quark.

The structured event data is translated into a flat n-tuple;
each row of a table represents an event, different particles
in an event (photons, electrons, taus) and their properties
(pt, eta, phi). Often, the n-tuples are still too big for in-
teractive analysis (2 TB). Therefore, the contents and the
number of events are reduced (GBs). Eventually, quanti-
ties from the final n-tuple are aggregated and plotted as
histograms. The time scale of the complete Dark Matter
workflow can range from days to weeks, depending on the
number of events needed for analysis.

The traditional user analysis workflow for CMS data uses
two C++ frameworks: CMSSW, specially designed for ana-
lyzing CMS data, and ROOT [3], which is a general, experiment-
independent C++ toolkit. The ROOT framework provides

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

statistical tools and a serialization format to persist recon-
structed and transformed objects in files. We provide two
implementations of this analysis workflow using Spark [1, 6].

Spark on Hadoop: We developed a library to convert the
official experiment data files in ROOT to Apache Avro row-
based format readable by Spark. The skimming and slim-
ming on the input data is implemented by using Spark’s
map, flatMap and filter transformations. We use Apache
Parquet columnar format to store the intermediate results
between stages of the calculation in HDFS, allowing to easily
ingest data into Dataframes and Datasets.

Spark on HPC [2]: We wrote a converter in Python to
convert the official experiment data files in ROOT to the
HDF5 format. HDF5 [5] is well supported at HPC plat-
forms including NERSC, and will allow us to use other HPC
programming interfaces (MPI). Our approach is to convert
each ROOT TBranch representing a particle in an event to a
group in HDF5, and each leaf representing a property with in
a branch to 1D dataset in HDF5. We stored the highly struc-
tured data into flat tables and column-oriented structure to
allow distributed processing across groups as needed. We
implemented a customized HDF5 reader in Spark/Scala to
read in an HDF5 group with specified datasets into a Spark
DataFrame. The data partition is based on the number of el-
ements in each HDF5 dataset per group across all the input
files. we use HDF5 hyper slabs to read in chunks to allow
maximal parallelism while reading data into DataFrames.
We implemented skimming and slimming code in Scala us-
ing filters, UDF and SQL queries on Spark DataFrames.

We ran the following test on each platform: The input
data was 170 GB represented in ROOT and Avro. HDF5
used 46 GB because only the columns needed in this anal-
ysis were converted and compressed. On Edison, we used
7 nodes, 20 cores and executor memory of 58GB. After
caching, it took about 2.0 seconds to calculate the sum of
weights. The same test on Princeton big data cluster took
14 seconds. The sample data set we used has 3.7 million
events; it took 1.7 seconds to count the number of events.
On Edison, we generated 7 output files, one per particle and
two for the event info. Writing all the DataFrames after
applying cuts took couple of minutes (< 6).

Spark is relatively new and emerging technology, and its
use, especially in the HEP community, is in exploratory



stages. The learning curve involved with the use of this
new technology, especially using Scala, cannot be ignored.
However, the availability of APIs in R and Python improves
the beginner user experience. Other advantages include task
distribution and user controlled data partitioning. We have
seen good scaling behavior of Spark applications with in-
crease in dataset size and the number of nodes with no ex-
tra work. Encoding skimming workflow using Scala best
practices is challenging along with optimal use of Spark
DataFrame features. The documentation and error report-
ing should be improved. However, the ease of use, reason-
able performance and good scalability makes Spark a viable
candidate for our future work.

2. ADDITIONAL AUTHORS
Cristina Mantilla, Fermi National Accelerator Laboratory,

email: cmantill@fnal.gov and Bo Jayatilaka Fermi Na-
tional Accelerator Laboratory, email: boj@fnal.gov

3. REFERENCES
[1] Spark. https://spark.apache.org.

[2] Spark Distributed Analytics Framework at NERSC.
https://www.nersc.gov/users/data-analytics/
data-analytics/spark-distributed-analytic-framework.

[3] R. Brun and F. Rademakers. ROOT: An object
oriented data analysis framework. Nucl. Instrum.
Meth., A389:81–86, 1997.

[4] S. Chatrchyan et al. The CMS experiment at the
CERN LHC. JINST, 3:S08004, 2008.

[5] The HDF Group. Hierarchical Data Format, version 5,
1997-2016. /HDF5/.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster Computing with Working
Sets. In Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’10, pages
10–10, Berkeley, CA, USA, 2010. USENIX Association.


