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Motivation
•When moving into Exascale (million way parallelism), computation

cost is dominated by communication cost which makes it necessity
to have efficient partitioning schemes.

• Space Filling Curve (SFC) based partitioning schemes are widely
used in adaptive scientific computations.

• In order to reduce overall communication cost imbalances as well
as overall energy consumption in Finite Element Method (FEM)
computations we introduce user defined load imbalance (tolerance
or slack) into SFC based partitioning schemes.

Figure 1: Octree partitioned using space filling curve, color coded by the process id
(MPI rank).

Methodology

Space Filling Curves (SFC)
SFC is a surjective mapping between the one dimensional space to
higher dimensional space. Hence using SFCs we can define a linear
ordering of higher dimensional data which can be used in data parti-
tioning and many other fields.

Finite element computations and MATVEC

• Since our evaluation of the quality of the partition will be based on
the evaluation of a MATVEC with the global finite element stiffness
matrix, please refer to qr for additional details on performing dis-
tributed finite element computations using octree meshes.

• The MATVEC refers to a function that takes a vector and returns an-
other vector, the result of applying the discretized PDE operator to
the the input vector. As the building block for most large-scale PDE
solvers,the cost, efficiency and scalability of the MATVEC operation
will determine the efficiency and scalability of the overall system.

Flexibility in SFC based partitioning schemes
In this work we focus on how MORTON and HILBERT curve based
partition schemes behave with a load flexibility (see Eq.1), in terms of
,

• MATVEC execution time

•Overall communication cost

• Energy consumption

flex part = ideal part± tol× ideal part (1)

(a) l=1, λ=2, s=16 (b) l=2, λ=1.2, s=24 (c) l=3, λ=1.05, s=28 (d) l=4, λ=1.01, s=30

Figure 2: Illustration of the increase in communication costs with low tolerance
(ideal load balancing). Partitions for the case of p = 3 are drawn with the boundary
of the partition (s) and the load-imbalance (λ) given along with the level (l) at which
the partition is defined. At each level, the orange partition (�) gets the extra load
that is progressively reduced. The green partition (�) gets the largest boundary that
progressively increases.

(a) tol = 0.001 (b) tol = 0.1 (c) tol = 0.5

Figure 3: Octree partition which assigned to mpi rank 3 with varying tolerance. Note
that the partition get smoother (reduced number of boundary surfaces) with higher
tolerance value.

Octree generation, balancing (2:1) and meshing

In order to perform distributed memory FEM(MATVEC ) operation we
need complete following steps.

•Octree generation: Generates an adaptive octree for a given set of
in a normal distribution.

•Octree balancing: We enforce 2 : 1 balance constraint over the gen-
erated octree. Which means for a given octant all it’s neighbours can
be one level refined or coarsen.

•Mesh generation: Simply refers to building an an efficient data
structure, which can efficiently retrieve neighbour node ids for a
given octant (node).

Ghost octants & communication matrix

• Since we are performing distributed MATVEC operation, at the time
of the meshing we exchange the octants (nodes) resides on other
processes (know as ghost octants, see Fig. 4) which has read only
access by others.

•Due to existence of ghost octants, each process need to communi-
cate with subset of processes while performing MATVEC operation.
Hence for the entire MATVEC operation we can define a communi-
cation matrixM, where

M =

{
mij if rank i exchange mij data with rank j
0 if rank i need not to communicate with rank j

(2)

Figure 4: Demontration of ghost oc-
tants for a given partition in an adap-
tive octree. Assuming that the green oc-
tants belongs to partition a and all the
grey octant would act as ghost octants
for that partition which needs to be ac-
cessed when performing the distributed
MATVEC operation.

Figure 5: High level diagram showing
main comphonents and their conectivity
to measure the energy consumption of
MATVEC operaton.

Energy & MATVEC

We provision resources and configure an 8-node cluster of physical
machines on CloudLab, as shown in Fig. 5. While a set of selected
8-node jobs is running (scheduled using SLURM), we collect power
draw measurements (obtained from on-board IPMI sensors) for every
node every second. After job completion, we use the instantaneous
draw samples (in W) to obtain per-job energy consumption estimates
(in J), for both entire jobs and the MATVEC computation. Hardware
specs: 2 Intel E5-2630 v3 8-core Haswell CPUs (2.40 GHz), 128GB
ECC Memory, 10Gb Ethernet.

Results
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Figure 6: Maximum MATVEC execution time across all processes for weak scal-
ing experiment with a grain size of 100K octants per process on Titan. HILBERT

is faster for all cases. The fluctuations are due to the MATVEC code overlapping
communication with computation.
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Figure 7: Comparison for number of non-zeros (nnz) elements in the communi-
cation matrix corresponding to perform MATVEC operation based on HILBERT and
MORTON based partitioning schemes for a mesh size of 1B nodes with 4096 mpi
tasks with varying tolerance values in TACC’s Stampede. Note that the scale differ-
ence between the axes in the plots, and for both partitioning schemes we can reduce
the nnz (overall communication cost) by increasing the tolerance value.
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(a) mpi tasks=256 number of cores=8
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Figure 8: Comparison for MATVEC energy consumption based on HILBERT and
MORTON based partitioning schemes for a mesh size of 95M & 2M nodes with 256
mpi tasks & 8 mpi tasks with varying tolerance values in CloudLab. Note that the
two scenarios depicts the effect of running 32 tasks in a single node Vs. 1 task in a
single node.

(a) HILBERT (b) MORTON

Figure 9: Sparsity structure of the communication matrices of HILBERT and MOR-
TON based partition schemes for a total mesh size of 1B nodes with 4096 mpi tasks
ran on TACC’s Stampedewith a tolerance value of 0.3. Note that the two matrices
have different sparsity structures and HILBERT is more sparse compared to MOR-
TON communication matrix.
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Figure 10: Energy consumed by each node while performing MATVEC operation ,
with ideal load balancing (for both HILBERT and MORTON ) Vs. flexible load bal-
ancing with a tolerance of 0.3 for 95M mesh nodes with 256 mpi tasks in CloudLab8
node cluster.

Conclusions
• Flexible SFC-based partitioning schemes can reduce overall com-

munication cost imbalances and energy consumption, by tolerating
user specified load imbalance.

•Hilbert ordering is better than Morton ordering in terms of preserv-
ing the geometric locality of objects resulting less communication
cost imbalances as well as overall communication cost.

More information and animations can be
found via this qr.

https://cloudlab.us/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://cloudlab.us/
https://www.tacc.utexas.edu/stampede/
https://cloudlab.us/

